Kisallioppiminen.fi Logo

kisallioppiminen.fi MAA4 Vektorit

$\def\vi{\bar{\imath}} \def\vj{\bar{\jmath}} \def\vv{\bar{v}} \def\vu{\bar{u}} \def\vw{\bar{w}} \def\va{\bar{a}} \def\vb{\bar{b}} \def\vc{\bar{c}} \def\vk{\bar{k}} \def\vn{\bar{n}} \def\pv{\overline} \def\R{\mathbb{R}} \def\Q{\mathbb{Q}} \def\N{\mathbb{N}} \def\Z{\mathbb{Z}} \def\pa{\mathopen]} \def\pe{\mathclose[} \def\lb{\mathop{\mathrm{lb}}} \require{color} \newcommand\T{\Rule{0pt}{1em}{.3em}} \require{mediawiki-texvc} $
$ \def\vi{\bar{\imath}} \def\vj{\bar{\jmath}} \def\vv{\bar{v}} \def\vu{\bar{u}} \def\vw{\bar{w}} \def\va{\bar{a}} \def\vb{\bar{b}} \def\vc{\bar{c}} \def\vk{\bar{k}} \def\pv{\overline} \require{color} $

Tehtäviä

Vektorin esittäminen vektoreiden $\vi$ ja $\vj$ avulla

Tarkastele alla olevan kuvan vektoreita. Mitkä niistä voidaan esittää muodossa $2\vi+\vj$?

Vektoreiden samuus

Määritä sellaiset reaaliluvut $r$ ja $s$, että vektorit $\vv=-r\vi+8\vj$ ja $\vw=5\vi-12s\vj$ ovat samat. Selitä, miten päättelit.

Paikkavektori

Määritä pisteen $P$ koordinaatit, jos

  1. $\pv{OP}=\vi+2\vj$
  2. $\pv{OP}=3\vi-4\vj$
  3. $\pv{OP}=-\vj$.

Kahden pisteen välinen vektori

Määritä vektori $\pv{AB}$ laskemalla tai kuvan avulla päättelemällä, jos

  1. $A=(-5,2)$ ja $B=(3,1)$
  2. $A=(3,-7)$ ja $B=(-4,8)$.
Jos määritit vektorin laskemalla, tarkista tuloksen järkevyys piirtämällä kuva tilanteesta.

Kahden pisteen välinen vektori

Tarkastele pisteitä $A=(-2,4)$, $B=(3,1)$ ja $C=(5,-3)$. Määritä piste $D$ laskemalla tai piirtämällä, jos

  1. $\pv{CD}=\pv{AB}$
  2. $\pv{DC}=\pv{AB}$
  3. $\pv{AD}=-\pv{AC}$
  4. $\pv{BC}=-\pv{AD}$.
Jos määritit pisteen laskemalla, havainnollista ratkaisuasi piirtämällä kuva tilanteesta.

Vektoreiden laskutoimituksia

Tarkastele alla olevaa kuvaa. Päättele kuvan avulla, mihin pisteeseen päädyt, kun lähdet pisteestä $(2,3)$ ja siirryt

  1. vektorin $\va$ verran
  2. ensin vektorin $\va$ verran ja sitten vektorin $\vb$ verran
  3. vektorin $-\vb$ verran
  4. ensin vektorin $-\va$ verran ja sitten vektorin $\vb$ verran.
Mihin vektoreiden laskutoimituksiin b- ja d-kohdat liittyvät?

Vektoreiden summa ja erotus

Tarkastele alla olevaa kuvaa. Piirrä vektoreiden $\vv$, $\vw$ ja $\vu$ avulla vektorit

  1. $\vv+\vw$
  2. $\vw-\vv$
  3. $\vv-\vw-\vu$
  4. $\vv-\vw+\vu$

Vektorin kertominen luvulla

Tarkastele alla olevaan kuvaa. Ilmaise vektorit $\vb, \vc, \bar{d}$ ja $\bar{e}$ vektorin $\va$ avulla.

Vektoreiden summa ja erotus

Tarkastele vektoreita $\vv=-2\vi+7\vj$, $\vw=6\vi-10\vj$ ja $\vu=-3\vi+5\vj$. Määritä

  1. $(\vv+\vw)-(\vw+\vu)$
  2. $(\vv+\vw)-(\vv-\vu)-(\vw+\vu)$.
Yritä ratkaista tehtävä mahdollisimman vähällä vaivalla.

Paikkavektori

Tutki vektoria $\pv{AB}=-9\vi+5\vj$. Määritä pisteen $B$ paikkavektori kuvan avulla päättelemällä tai laskemalla, jos

  1. piste $A=(11,2)$
  2. piste $A=(-8,-7)$.
Jos määritit paikkavektorin laskemalla, tarkista tuloksen järkevyys hahmottelemalla kuva tilanteesta.

Vektoreiden suunta

Tarkastele alla olevassa kuvassa olevaa vektoria $\vv$. Piirrä koordinaatisto ja siihen

  1. jokin vektori, joka on sama kuin $\vv$
  2. vektori, joka on vektorin $\vv$ kanssa samansuuntainen mutta kuitenkin eri vektori
  3. vektori, joka on vektorin $\vv$ kanssa yhdensuuntainen mutta ei samansuuntainen.
  4. jokin vektori, jonka pituus on 1,5 kertaa vektorin $\vv$ pituus ja joka ei ole vektorin $\vv$ kanssa yhdensuuntainen.
Onko jokin piirtämistäsi vektoreista vektorin $\vv$ vastavektori? Jos ei, piirrä koordinaatistoon vielä vektorin $\vv$ vastavektori.

Vektoreiden yhdensuuntaisuus

Oletetaan, että kumpikaan vektoreista $\vv$ ja $\vw$ ei ole nollavektori. Tutki, ovatko vektorit $\vv$ ja $\vw$ yhdensuuntaiset, jos

  1. $\vv=6\vw$
  2. $2\vv+2\vw=14\vw-\vv$.

Paikkavektori

Merkitään $A=(-5,2)$, $B=(-1,-1)$ ja $C=(2,1)$. Tiedetään, että vektorit $\pv{AB}$ ja $\pv{CD}$ ovat yhtä pitkät. Määritä piste $D$, jos vektorit $\pv{AB}$ ja $\pv{CD}$ ovat

  1. samansuuntaiset
  2. vastakkaissuuntaiset.
Ratkaise tehtävä sekä piirroksen avulla että ilman piirrosta.

Paikkavektori

Pisteen $A$ paikkavektori on $\pv{OA}=5\vi+12\vj$. Tiedetään, että $B=(-2,-5)$ ja $C=(2,-1)$.

  1. Vektori $\pv{BD}$ on samansuuntainen kuin vektori $\pv{OA}$ ja sen pituus on kaksi kertaa vektorin $\pv{OA}$ pituus. Päättele, mikä piste $D$ on. Selitä, miten ajattelit.
  2. Vektori $\pv{CE}$ on yhdensuuntainen vektorin $\pv{OA}$ kanssa ja sen pituus on puolet vektorin $\pv{OA}$ pituudesta. Mitä voit päätellä pisteestä $E$? Selitä, miten ajattelit.

Vektoreiden summa ja erotus

Tarkastele alla olevaa kuvaa. Muodosta kuvan vektoreiden avulla lauseke, jolla kuljetaan

  1. pisteestä $A$ pisteeseen $C$
  2. pisteestä $B$ pisteeseen $D$
  3. origosta eli pisteestä $O$ pisteeseen $B$.

Paikkavektori

Tarkastele alla olevaa kuvaa.

  1. Lausu kuvan vektorit vektoreiden $\vi$ ja $\vj$ avulla.
  2. Muodosta kuvan vektoreiden avulla lauseke, jolla kuljetaan origosta $O$ pisteeseen $C$.
  3. Sijoita edellisen kohdan lausekkeeseen a-kohdan vektorit ja sievennä lauseke.
  4. Katso kuvasta pisteen $C$ koordinaatit. Vertaa tulosta c-kohdan tulokseen.
  5. Mikä on pisteen $C$ paikkavektori?

Vektoreiden yhdensuuntaisuus

Päättele, ovatko vektorit $\va$ ja $\vb$ yhdensuuntaiset, jos

  1. $\va=\frac{1}{4}\vi+3\vj$ ja $\vb=\vi-12\vj$
  2. $\va=-10\vi+\frac{2}{5}\vj$ ja $\vb=\frac{4}{5}\vi+2\vj$?
Perustele sanallisesti.

Vektorin pituus

Tarkastele alla olevaa kuvaa. Mitkä kuvan vektoreista ovat yhtä pitkiä kuin vektori $\vv$? Perustele vastauksesi.

Vektorin pituus

Vektorin $\vv$ pituus on 24.

  1. Määritä vektoreiden $-6\vv$ ja $\frac{1}{8}\vv$ pituudet.
  2. Vertaa vektoreiden $-6\vv$ ja $\frac{1}{8}\vv$ suuntaa vektorin $\vv$ suuntaan.

Yksikkövektori

Muodosta vektorin $\vv=-5\vi+9\vj$ kanssa

  1. samansuuntainen yksikkövektori
  2. samansuuntainen vektori, jonka pituus on $4$.

Yksikkövektori

Tiedetään, että vektorin $\vv$ pituus on

  1. $|\vv| = 8$
  2. $|\vv| = \sqrt{5}$
  3. $|\vv| = \frac{1}{3}$.
Selitä, miten voit näissä tapauksissa määrittää vektorin $\vv$ kanssa samansuuntaisen yksikkövektorin.

Pistetulo

Laske vektoreiden $\vv$ ja $\vw$ pistetulo, jos

  1. $\vv=\frac{1}{2}\vi-3\vj$ ja $\vw=10\vi+7\vj$
  2. $\vv=9\vi+11\vj$ ja $\vw=\frac{2}{3}\vi-2\vj$

Pistetulo

Kolmion kärjet ovat $A=(-4,3)$, $B=(5,2)$ ja $C=(1,-2)$.

  1. Muodosta vektorit $\pv{AB}$, $\pv{BC}$ ja $\pv{CA}$.
  2. Osoita pistetulon avulla, että kolmio on suorakulmainen.

Vektoreiden välinen kulma

Tarkastele alla olevan kuvan kolmiota. Määritä pistetulon avulla asteen tarkkuudella kulmat

  1. $\sphericalangle(\pv{AB},\pv{AC})$
  2. $\sphericalangle(\pv{AB},\pv{CB})$
  3. $\sphericalangle(\pv{CA},\pv{BC})$.
Piirrä kuva tilanteesta ja merkitse siihen, mikä kulma on kysymyksessä.

Vektoreiden kohtisuoruus

  1. Etsi piirroksen avulla vektori, joka on yhtä pitkä kuin vektori $\vv = 2\vi-3\vj$ ja kohtisuorassa sitä vastaan.
  2. Päättele, mikä vektori on yhtä pitkä kuin vektori $\vw = x\vi+y\vj$ ja kohtisuorassa sitä vastaan.
  3. Tarkista pistetulon avulla, että b-kohdassa tekemäsi johtopäätös on oikein.